CoH₃

The Coupled-Channels and Hauser-Feshbach Code

Toshihiko Kawano

Los Alamos National Laboratory
Theoretical Division

WANDA: Workshop for Applied Nuclear Data Activities Virtual Event, Jan. 25 – Feb 3, 2021

Statistical Model Code for Compound Nuclear Reactions

- A main tool for calculating nuclear reactions for A > 20, $E_n > 1$ keV (above resolved resonance region)
- Provide complete information of nuclear reactions
 - reaction cross sections
 - energy and angular distributions of secondary particles

CoH₃: Coupled-Channels Hauser-Feshbach code

- 45,000 lines C++ code
- internal optical model / coupled-channels solver
- compound nucleus decay by deterministic or Monte Carlo method
- exclusive reaction cross sections and spectra [JNST 47, 462 (2010)]

Modules and Models Employed in CoH₃

- Optical Model
 - spherical and deformed (rotational or vibrational model)
 - DWBA for direct inelastic scattering
- Compound Reaction
 - Moldauer's width fluctuation correction with LANL parameters [NDS 118, 183 (2014)]
 - Engelbrecht-Weidenmüller transformation with direct channels [PRC 94, 014612 (2016)]
 - Gilbert-Cameron level density [JNST 43, 1 (2006)]
- Pre-equilibrium Reaction
 - 2-component exciton model
 - (FKK MSD/MSC still external code)
- Prompt Fission Neutron Spectrum
 - advanced Madland-Nix model including pre-fission neutrons
- Direct/Semidirect Capture [PRC 75, 054618 (2007)]
- Mean-Field Model (FRDM and Hartree-Fock-BCS) [EPJ 146, 12004 (2017)]

Multi-Particle Emission and Exclusive Cross Section

- Nucleus objects for (n,d) and (n,np) channels are different
- The current versioin of CoH₃ is slow at high energies, because a large number of CN object emerge

Exclusive Particle Emission Spectrum

n (20 MeV) + 58 Ni

Photonuclear Reactions

 pre-equilibrium process in the photo-reaction not so well established

[NDS 163, 109 (2020)]

Crucial Development Needed for Isotope Production

Pre-equilibrium reaction

- PE plays an important role at high energies
 - Exciton model works when phenomenological parameters are well-tuned, but crude approximations are always involved
 - New development of quantum mechanical models ongoing at CEA and LANL, although at moderate pace
 - There a wide unexplored area in the composite particle emission

Nuclear level densities

- The nuclear level density is the most important physical quantity for predicting unknown IP cross section
 - It could have the largest uncertainties in the high energy reactions
 - Experimental data of nuclide production in the vicinity of the target reactions essential

